
\
PERGAMON International Journal of Solids and Structures 25 "0888# 3206Ð3221

9919!6572:88:, ! see front matter Þ 0888 Elsevier Science Ltd[ All rights reserved
PII] S 9 9 1 9 ! 6 5 7 2 " 8 7 # 9 9 1 9 3 ! 1

Problems of radially polarized piezoelastic bodies
Wei!Qiu Chen�

Department of Civil En`ineerin`\ Zhejian` University\ Han`zhou\ 209916\ P[R[ China

Received 2 February 0887^ in revised form 08 June 0887

Abstract

In this paper\ three displacement functions are introduced to simplify the basic equations of a radially
polarized\ spherically isotropic\ piezoelectric medium[ By expanding the displacement functions as well as
the electric potential in terms of spherical harmonics\ the basic equations are converted to an uncoupled
Euler type\ second!order ordinary di}erential equation and a coupled system of three such ones[ Based on
the well!known solution to the Euler equation\ the general solution for the static problem is obtained[ Some
axisymmetric problems are then considered[ It is noted that the present analysis is an extension of that of
spherically isotropic pure elasticity "Chen\ 0855#[ Þ 0888 Elsevier Science Ltd[ All rights reserved[
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0[ Introduction

Piezoelectric ceramics and composites have been widely used in electromechanical devices and
in smart material systems "Rao and Sunar\ 0883# and\ consequently\ have attracted a lot of
attentions from both scientists and technical engineers[ Because of the di.culty related to the
particular coupling e}ect between electric _eld and mechanical deformation\ few problems were
considered before 0889[ Since 0889\ however\ a great number of works have been published\ dealing
with a variety of problems of cracks and inhomogeneities "Wang\ 0881^ Dunn and Wienecke\ 0886^
Huang\ 0886#\ bending and vibration of plates and shells "Lee and Saravanos\ 0886^ Heyliger\
0886#\ general solutions and Green|s functions "Ding et al[\ 0885^ Dunn and Wienecke\ 0885^ Ding
et al[\ 0886# among others[ Because the most technologically important PZMs are poled ceramics
which exhibit transverse isotropy with the unique axis aligned along the poling direction\ the above
mentioned works have taken the e}ect of transverse isotropy into consideration[ It is noted that
when the piezoelectric materials are poled spherically in the radial direction\ they will exhibit
spherical isotropy\ of which the linear constitutive relations can be expressed as follows ðassuming
the center of anisotropy coincides with the origin of the spherical coordinates "r\ u\ f#Ł]
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where\ sij and sij are the stress and strain tensors\ respectively^ F and Di are the electric potential
and electric displacement vector\ respectively^ cij are the elastic sti}ness constants "measured in a
constant electric _eld#\ oij are the dielectric constants "measured at constant strain#\ and eij the
piezoelectric constants[ The strain and mechanical displacement relations and the equilibrium
equations are the same as those of pure elasticity so that they are not given here for the sake of
simplicity[ The reader is referred to the excellent monograph by Lekhnitskii "0870#[ The charge
equation of electrostatics is "Tiersten\ 0858#]
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where rf is the free charge density[ Despite the fact that the spherical con_guration is very common
in electromechanical devices "Kirichok\ 0879#\ few theoretical works on the subject can be found
in literature[

Even for pure elasticity\ the basic equations of a spherically isotropic body seem too complicated
to be solved directly[ To simplify the basic equations of equilibrium\ Hu "0843# introduced two
displacement potentials to represent displacement components^ he showed that the general solu!
tions may be found through the use of spherical harmonics[ On the basis of Hu|s separation
method\ Chen "0855# considered some axisymmetric problems such as a concentrated force in an
in_nite medium\ stress concentration due to a spherical cavity\ and a steadily rotating shell[
Recently\ Chen "0884# simpli_ed the equations of motion of a spherically isotropic elastic medium
with radial inhomogeneity by adopting three displacement functions and considered some coupled
vibration problems of spherical shells "Ding and Chen\ 0885a\ b#[

In this paper\ three displacement functions "Chen\ 0884^ Ding and Chen\ 0885a\ b# are employed
to represent three displacement components[ It is found that the basic equations of equilibrium
and the charge equation of a spherically isotropic body are then reduced to an uncoupled partial
di}erential equation and a coupled system of three partial di}erential equations[ Some consider!
ations on the solution are then presented[ As expected\ for the usual transversely isotropic piezo!
electricity\ results degenerate to those available in the literature[ By expanding three displacement
functions as well as the electric potential in terms of spherical harmonics\ the controlling equations
are further simpli_ed to an uncoupled second!order ordinary di}erential equation "SOODE# and
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a coupled system of three SOODEs[ All these SOODEs are of the Euler type and their solutions
can be readily obtained[ A general solution for the static problem is then derived\ and some
axisymmetric problems are considered[ Numerical results are given for concentrations of stress
and electric displacement in the neighborhood of a spherical cavity to show the e}ects of material
constants[ The distributions of nondimensional hoop stress suu and electric displacement Du along
the radius in the vicinity of the cavity are also presented in _gure form[

1[ Separation technique

1[0[ The decomposition of mechanical displacements

Three displacement functions w\ G and c are now introduced so that the three components of
mechanical displacement ur\ uu and uf are expressed as follows "Chen\ 0884^ Ding and Chen\
0885a\ b#
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It is noted here that the present use of three displacement functions is much simpler than that of
two potential functions employed by other authors mentioned earlier[ It also seems natural that
three displacement components are represented by three displacement functions so that it is easier
to understand[ Suppose the body force components Fi "i � r\ u\ f# can also be decomposed in the
same way\ i[e[

rFu � −
0

sin u

1V
1f

−
1U
1u

\ rFf �
1V
1u

−
0

sin u

1U
1f

[ "3#

The most common case is that the body force vector is potential\ then

V � 9\ Fr � −
1U
1r

[ "4#

By employing eqns "2#Ð"3#\ through some lengthy manipulations\ we can transfer the basic equa!
tions of a spherically isotropic piezoelectric body to the following equations]
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From eqns "5#\ one can obtain]

A−rU �
1H
1f

\ B¦rV � sin u
1H
1u

[ "09#

Substituting eqns "09# into eqns "5# yields 91
0H � 9[ Generally\ we can assume H 0 9[ For details\

see for examples\ Hu "0843# and Chen "0884# for homogeneous and non!homogeneous spherically
isotropic elasticity\ respectively[ Similar demonstration can be given for the piezoelectric case\
however\ it is omitted here because no unexpected di.culty is involved[ Under this consideration\
eqns "09# read

A−rU � 9\ B¦rV � 9[ "00\01#

It is seen that function c is uncoupled from the other two displacement functions w and G\ and
the electric potential F[ In particular\ eqn "01# is a second order\ uncoupled partial di}erential
equation in c^ eqns "6#\ "7# and "00# form a coupled partial di}erential equation system in w\ G
and F[ The separability of the controlling equations of spherically isotropic\ piezoelectric elasticity
will facilitate the solution to relevant problems\ as shown later[

1[1[ General considerations on the solution

The solution to eqn "01# can be written as]

c � c9¦c0\ "02#

where c9 is the general solution of the following homogeneous equation]
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0
1
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and c0 is the particular solution of the associated non!homogeneous equation]
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The solution to the coupled system can be written as
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where "w9\ G9\ F9# and "wi\ Gi\ Fi#\ "i � 0\ 1\ 2# are the general and particular solutions to the
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corresponding homogeneous and inhomogeneous equations\ respectively[ They can be expressed
as]

w9 � Ai0F\ G9 � Ai1F\ F9 � Ai2F\ "i � 0\ 1\ 2#\ "06#

wj � Aj0F�j\ Gj � Aj1F�j\ Fj � Aj2F�j\ " j � 0\ 1\ 2\ no summation#\ "07#

where Aij "i\ j � 0\ 1\ 2# are cofactors of the determinant =D=[ Here D is the following operator
matrix

D � &
L0 −L1 L5

L2 −L391
0 L4

L6 −L791
0 −L8

' "08#

F and F�j " j � 0\ 1\ 2# satisfy the following homogeneous and non!homogeneous equations\ respec!
tively\

=D=F � 9\ =D=F�0 � rU\ =D=F�1 � −r1Fr\ =D=F�2 � r1rf[ "19#

1[2[ Transverse isotropy

The transverse isotropy case usually described in the cylindrical coordinates "r0\ f\ z# or Cartesian
coordinates "x\ y\ z# can be seen as a limiting case of the spherical isotropy by the following limiting
procedure]
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Now assuming c � −c�:r and G � G�:r in eqn "2#\ and making use of eqn "10#\ one obtains
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which has been shown by Ding et al[ "0885#[ We can also write down eqn "3# in this case as
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where V � −V� was introduced[ Thus eqn "01# will take the following form for transverse isotropy]
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0
1
"c00−c01#L%c�¦V� � 9\ "13#

which is the same as eqn "08# in Ding et al[ "0885#\ where the e}ect of body force was absent[ By
virtue of eqns "10# and "11#\ the coupled system of eqns "6#\ "7# and "00# becomes]
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where the property Fr : Fz was employed[ Omitting the right hand side\ eqn "14# is found to be
the same as eqn "19# in Ding et al[ "0885#[ Solution to eqn "14# can be constructed by using
operator theory and the reader is referred to Ding et al[ "0885#[

2[ General nonaxisymmetric solution

Noticing that all resulting equations include the partial operator 91
0 which is de_ned in eqn "8#\

we assume
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where Sm
n "u\ f# � Pm

n "cos u# exp"im f# are spherical harmonics and Pm
n "cos u# are the associated

Legendre functions^ n and m are integers[ Substitution of eqn "15# into eqns "6#\ "7#\ "00# and "01#
yields
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Notice here that the body force and free charge density have been dropped during the derivation[
It is obvious that solutions to the so!called Euler eqns "16#Ð"29# can be obtained by assuming
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where An\ Bn\ Cn and Dn are undetermined constants[ Substituting eqn "21# into eqns "16#Ð"29#
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Apparently\ from eqn "22#\ one can get

ln0\1 � 2ð8:3¦"n−0#"n¦1#" f0−f1#:1Ł0:1[ "25#

It is seen that eqn "25# is identical to that for pure elasticity "Chen\ 0855#[ From eqns "23#\ we can
obtain the equation governing nn as

=H= � 9[ "26#

It can be veri_ed that eqn "26# is a cubic algebraic one in n1
n [ For stable materials\ the eigenvalue

nn of eqn "26# cannot be pure imaginary[ Thus we assume that nni � −nn"i¦2# and Re ðnniŁ ³ 9
"i � 0\ 1\ 2# and that six eigenvalues of eqn "26# are distinct "if there are repeated roots\ solutions
"21# shall take logarithm form#[ If rank"H# � 1\ one obtains the following relations from eqns
"23#]

Bni � K0
niAni\ Cni � K1

niAni\ "27#

for each eigenvalue nni\ where K0
ni and K1

ni can be solved from the two independent equations in
eqns "23#[ Making use of eqns "2#\ "15#\ "21# and "27#\ we obtain a general solution to the basic
equations as follows]
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It is noted here that eqns "16#Ð"29# are only valid for n − 0\ while for n � 9 we have\ instead the
following two equations]

r1wý9¦1rw?9¦p0w9¦q0r
1Fý9¦q1rF?9 � 9\ "39#

r1Fý9¦1rF?9−r1wý9−p6rw?9−p7w9 � 9[ "30#

As a result\ we obtain a fourth!order eigenequation instead of eqn "26#\ the sixth!order one[ To
write in a united form as shown in eqn "28#\ we shall employ the following formulae for n � 9
there]

A9i � C9i\ K1
9i � 0\ K0

9i � −
q0"n1

9i−0:3#¦"q1−1q0#"n9i−0:1#

n1
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\ "i � 0\ 1\ 3\ 4# "31#

and A92 � A95 � 9[ It can be shown that the solutions corresponding to n93 � 0:1\ n03 � 0:1 and
l01 � 2:1 all give zero stress _elds as well as zero electric displacements[ For the sake of convenience\
we assumed that A93\ A03\ and B01 are all equal to zero[

If the piezoelectric e}ect is neglected\ expressions "28# degenerate identically to those of elasticity
"Chen\ 0855#[

3[ Axisymmetric problems

3[0[ The `eneral solution

As considered by Chen "0855#\ we shall pay attention to the boundary!value problem when the
piezoelectric medium is bounded by two concentric spherical surfaces de_ned by r0 and r1\
9 ¾ r0 ¾ r1[ For the axisymmetric problem\ eqns "28# read
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where Pn"cos u# is the Legendre polynomial[ The stress and electric displacement components are]
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We can establish without di.culty the corresponding relations for the boundary conditions as for
the case for elasticity "Chen\ 0855# and derive the linear equations to determine the arbitrary
constants Ani and Dni for the general axisymmetric problem[ However\ these are omitted and some
axisymmetric problems will be considered in the following]

3[1[ Concentrated force P actin` at the ori`in

From the following mechanical equilibrium conditions over any surface enclosing the origin

1p g
p

9

"sr cos u−tru sin u#r1 sin u d u¦P � 9\ "34#

it can be seen that the stress must include factor r−1[ After considerable computation\ it is shown
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that eqn "26# has a root −0:1 for n � 0[ Without loss of the generality\ we take n00 � −0:1 and
eqns "23# give

K0
00 �

f6" f0¦f1¦1#−1" f5−f4# f4f7
f6" f2−f0−f1−0#¦" f5−f4# f4f7

\ K1
00 �

f4"1f2−f0−f1#
f6" f2−f0−f1−0#¦" f5−f4# f4 f7

[ "35#

Thus the non!zero piezoelectric _elds due to a concentrated force P at the origin can be derived]

srr � −
2P
3p

K0
00" f3−1f2#−1f2¦f7K

1
00

K0
00" f3−1f2−1#¦K1

00"0−1f4# f7−1f2−3

cos u

r1
\

sru � −
2P
3p

K0
00¦1¦f4 f7K

1
00

K0
00" f3−1f2−1#¦K1

00"0−1f4# f7−1f2−3

sin u

r1
\

suu � sff �
2P
3p

" f0¦f1#"K0
00¦0#−f2K

0
00−f5 f7K

1
00

K0
00" f3−1f2−1#¦K1

00"0−1f4# f7−1f2−3

cos u

r1
\

Dr � −
2Pe22

3pc33

K0
00"0−1f5#−1f5−K1

00

K0
00" f3−1f2−1#¦K1

00"0−1f4# f7−1f2−3

cos u

r1
\

Du �
2Pe22

3pc33

−f4"K0
00¦1#¦f6K

1
00

K0
00" f3−1f2−1#¦K1

00"0−1f4# f7−1f2−3

sin u

r1
\

ur �
2P

3pc33

K0
00

K0
00" f3−1f2−1#¦K1

00"0−1f4# f7−1f2−3

cos u

r
\

uu �
2P

3pc33

0

K0
00" f3−1f2−1#¦K1

00"0−1f4# f7−1f2−3

sin u

r
\

F �
2Pe22

3pc33o22

K1
00

K0
00" f3−1f2−1#¦K1

00"0−1f4# f7−1f2−3

cos u

r
[ "36#

At this stage\ one can easily derive the results corresponding to elasticity from the foregoing
equations[ It is found there are some printing errors in eqns "17# and "18# in Chen "0855#[

3[2[ Point char`e Q actin` at the ori`in

The electric equilibrium condition over any surface enclosing the origin demands

1p g
p

9

Drr
1 sin u du � Q[ "37#

Allowing for it\ the non!zero expressions of the piezoelectric _eld due to a point charge Q acting
at the origin are derived]
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srr �
Qc33

3pe22

K0
90"1f2−f3#−f7

K0
90"1f5−0#¦0

0

r1
\ suu � sff �

Qc33

3pe22

K0
90" f0¦f1−f2#−f5 f7
K0

90"1f5−0#¦0

0

r1
\

Dr �
Q
3p

0

r1
\ ur �

Q
3pe22

K0
90

K0
90"1f5−0#¦0

0
r
\ F �

Q
3po22

0

K0
90"1f5−0#¦0

0
r
\ "38#

where K0
90 � f5 f7:" f0¦f1−f2#[

3[3[ Stress concentration in the nei`hborhood of a spherical cavity

Here we intend to give the piezoelectric _eld of an in_nite piezoelastic medium with a spherical
cavity "r � r0# due to a uniform tension s9

zz applied at in_nity[ We shall _nd a supplementary
solution which vanishes at in_nity and which satis_es the following boundary conditions at r � r0]

srr � −s9
zz cos1 u � −$

0
2

¦
1
2

P1"cos u#% s9
zz\

sru � s9
zz sin u cos u � −

s9
zz

2
1

1u
P1"cos u#\

Dr � 9[ "49#

By comparing eqns "49# and "33#\ we get the equations to determine the nonzero constants A90\
A91\ A10\ A11 and A12 as follows]

s
1

i�0

A9ir
n9i−2:1
0 $c22K

0
9i 0n9i−

0
11¦1c02K

0
9i¦

e1
22

o22
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9i 0n9i−

0
11%� −

0
2

s9
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s
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i�0

A9ir
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0 $e22K
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9i 0n9i−

0
11¦1e20K

0
9i−e22K

1
9i 0n9i−

0
11%� 9[

s
2

i�0

A1ir
n1i−2:1
0 $c22K

0
1i 0n1i−

0
11¦1c02"K0

1i¦2#¦
e1

22

o22

K1
1i 0n1i−

0
11%� −

1
2

s9
zz\ "40#

s
2

i�0

A1ir
n1i−2:1
0 6c33 $K0

1i− 0n1i−
2
11%¦

e04e22

o22

K1
1i7� −

0
2

s9
zz\

s
2

i�0

A1ir
n1i−2:1
0 $e22K

0
1i 0n1i−

0
11¦1e20"K0

1i¦2#−e22K
1
1i 0n1i−

0
11%� 9[ "41#

The total piezoelectric _eld is then obtained by combining the above supplementary solution with
that caused by the uniform tension in a perfect piezoelectric body[ As done in Chen "0855#\ it is
interesting to give the concentration factor de_ned by suu"r0\ 89>\ f#:s9

zz as follows]



W[!Q[ Chen : International Journal of Solids and Structures 25 "0888# 3206Ð32213217

Fig[ 0[ Stress concentration factor when one of the nondimensional material constants "PZT!3# is multiplied by a factor
from 9[5Ð0[4[

ks � suu"r0\ 89>\ f#:s9
zz

� 0¦ s
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i�0

"c33A9ir
n9i−2:1
0 :s9

zz# 6K0
9i $f0¦f1¦f2 0n9i−

0
11%¦f5f7K

1
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0
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"c33A1ir
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0 :s9

zz# 6K0
1i $f0¦f1¦f2 0n1i−

0
11%¦5f0¦f5f7K
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1i 0n1i−

0
117[ "42#

It can be seen from eqns "40#Ð"42# that the stress concentration factor ks is independent of the
radius r0 as for elastic materials[

The e}ects of nondimensional material constants on the stress concentration factor ks are shown
in Fig[ 0[ Each curve gives the stress concentration factor when one of the material constants is
multiplied by a factor from 9[5Ð0[4 for PZT!3\ the constants of which "and other piezoelectric
materials considered hereafter# can be found in Dunn and Taya "0883#[ We can calculate the
nondimensional material constants of PZT!3 as] f0 � 4[32\ f1 � 2[93\ f2 � 1[89\ f3 � 3[38\ f4 � 9[73\
f5 � −9[23\ f6 � 0[04 and f7 � 0[47[ The stress concentration factor\ for example\ for the material\
of which f0 � 0[0×4[32 and all other constants keep invariant\ is 1[394\ as may be read o} the
curve marked f0 in Fig[ 0 where the multiplication factor on the abscissa is 0[0[

In Fig[ 1\ the variations of ks"r# � suu"r\ 89>\ f#:s9
zz with the radius in the vicinity of the cavity

are shown\ for four di}erent piezoelectric materials] PZT!3\ PZT!4\ PZT!6A and BaTiO2\ and
their corresponding pure elastic ones[ Materials of curves from the top to the bottom in the left of
Fig[ 1 are in turn PZT!3\ PZT!4\ [ [ [ \ BaTiO2 and BaTiO2"E#\ respectively\ where "E# indicates the
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Fig[ 1[ Variation of ks"r# in the vicinity of cavity[

pure elastic one corresponding to the speci_c piezoelectric material[ It can be seen that when the
radius becomes larger\ the di}erence between the e}ects of four piezoelectric materials as well as
their corresponding elastic ones on the distribution of ks"r# decreases[

3[4[ Electric displacement concentration in the nei`hborhood of a spherical cavity

At last\ let|s consider an in_nite piezoelastic medium with a spherical cavity "r � r0# due to a
uniform electric displacement D9

z applied at in_nity[ The supplementary solution which vanishes
at in_nity should satisfy the following boundary conditions at r � r0]

Dr � −D9
z cos u � −P0"cos u#D9

z \ srr � sru � 9[ "43#

By comparing eqns "43# and "33#\ we get the equations for determining the nonzero constants A00\
A01 and A02 as follows]

s
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i�0

A0ir
n0i−2:1
0 $c22K

0
0i 0n0i−

0
11¦1c02"K0

0i¦0#¦
e1

22

o22

K1
0i 0n0i−

0
11%� 9\

s
2

i�0

A0ir
n0i−2:1
0 6c33 $K0

0i−0n0i−
2
11%¦

e04e22

o22

K1
0i7� 9\

s
2

i�0

A0ir
n0i−2:1
0 $e22K

0
0i 0n0i−

0
11¦1e20"K0

0i¦0#−e22K
1
0i 0n0i−

0
11%� −D9

z [ "44#

The electric displacement concentration factor kD is de_ned as
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Fig[ 2[ Electric displacement concentration factor when one of the nondimensional material constants "PZT!3# is
multiplied by a factor from 9[5Ð0[4[

kD � Du"r0\ 89>\ f#:D9
z � −0− s

2

i�0

"e22A0ir
n0i−2:1
0 :D9

z #"f4 ðK0
0i−"n0i−2:1#Ł−f6f7K

1
0i#[ "45#

Observe that the electric displacement concentration factor kD is also independent of the radius r0

as for the stress concentration factor ks[
The e}ects of material constants on the electric displacement concentration factor kD are shown

in Fig[ 2 for PZT!3[ It is noted here that curves labeled by the same symbols in Figs[ 0 and 2 have
identical contents so that they are not marked in Fig[ 2[ The variations of
kD"r# � Du"r\ 89>\ f#:D9

z with the radius in the vicinity of the cavity for the four piezoelectric
materials are presented in Fig[ 3[

4[ Conclusions

In this paper\ we simplify the basic equations of a radial polarization\ spherical isotropic\
piezoelastic medium by the introduction of three displacement functions[ For the general non!
axisymmetric problem\ the equations are further reduced to an uncoupled second!order ordinary
di}erential equation in unknown cn\ and a coupled system of three second!order ordinary di}er!
ential equations in the other three unknowns wn\ Gn and Fn[ It is found that all these second!order
di}erential equations are of the Euler type\ to which the solution is well established[ Some
axisymmetric boundary condition problems are considered based on the general solution] a concen!
trated force and a point charge acting at the origin of an in_nite piezoelectric body\ and an in_nite
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Fig[ 3[ Variation of kD"r# in the vicinity of cavity[

piezoelectric medium with a spherical cavity under uniform extension and electric displacement at
in_nity\ respectively[ It is shown that some characteristics associated with the pure elasticity still
are valid for the piezoelectricity^ for example\ the stress concentration factor ks is independent of
the radius r0 of the cavity[ It is also noted that if the piezoelectric e}ect is neglected\ our results
degenerate identically to those of the pure elasticity "Chen\ 0855#[ For an in_nite piezoelectric
body with a spherical cavity\ numerical results are presented to demonstrate the e}ects of material
constants on the stress concentration factor ks under uniform extension as well as those on the
electric displacement concentration factor kD under uniform electric displacement[
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